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(57) ABSTRACT

A fully automatic method for segmentation of the mitral
leaflets in 3D transesophageal echocardiographic (3D TEE)
images is provided. The method combines complementary
probabilistic segmentation and geometric modeling tech-
niques to generate 3D patient-specific reconstructions of the
mitral leaflets and annulus from 3D TEE image data with no
user interaction. In the model-based segmentation frame-
work, mitral leaflet geometry is described with 3D continuous
medial representation (cm-rep). To capture leaflet geometry
in a target 3D TEE image, a pre-defined cm-rep template of
the mitral leaflets is deformed such that the negative log of a
Bayesian posterior probability is minimized. The likelihood
of the objective function is given by a probabilistic segmen-
tation of the mitral leaflets generated by multi-atlas joint label
fusion, while the validity constraints and regularization terms
imposed by cm-rep act as shape priors that preserve leaflet
topology and constrain model fitting.
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FULLY AUTOMATIC IMAGE
SEGMENTATION OF HEART VALVES USING
MULTI-ATLAS LABEL FUSION AND
DEFORMABLE MEDIAL MODELING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation No. 61/888,270, filed on Oct. 8, 2013, the entire con-
tents of which are hereby incorporated by reference.

GOVERNMENT RIGHTS

The subject matter disclosed herein was made with gov-
ernment support under grant numbers HL063954,
HL073021, HL103723, HL119010, AGO037376, and
CA130946 awarded by the National Institutes of Health and
under grant number 10PRE3510014 awarded by the Ameri-
can Heart Association. The Government has certain rights in
the herein disclosed subject matter.

TECHNICAL FIELD

The invention relates to quantitative image analysis and,
more particularly, to a fully automated method for mitral
leaflet segmentation in 3D images, such as transesophageal
echocardiographic ultrasound images.

BACKGROUND

In a physiologically normal state, the mitral valve main-
tains unidirectional blood flow across the left heart, and its
geometry and mechanics are essential to proper cardiac func-
tion. The valve consists of two leaflets (anterior and poste-
rior), a fibro-elastic ring (the annulus) which anchors the
leaflets to the surrounding heart tissue, and a subvalvular
apparatus comprised of chordae tendinae and papillary
muscles that synchronize mitral leaflet, annular, and left ven-
tricular wall motion.

Three dimensional transesophageal echocardiography (3D
TEE) has been effectively used in both research and clinical
settings to visualize and quantify mitral valve morphology
and motion in vivo (Abraham, T. P., et al., “Feasibility, accu-
racy, and incremental value of intraoperative three-dimen-
sional transesophageal echocardiography in valve surgery,”
Am J Cardiol, Vol. 80, pp. 1577-1582 (1997); Ahmed, S., et
al,, “Usefulness of transesophageal three-dimensional
echocardiography in the identification of individual segment/
scallop prolapse of the mitral valve,” Echocardiography, Vol.
20, pp. 203-209 (2003); Grewal, 1., et al., “Real-time three-
dimensional transesophageal echocardiography in the intra-
operative assessment of mitral valve disease,”. J Am Soc
Echocardiogr, Vol. 22, pp. 34-41 (2009); Sugeng, L., et al.,
“Live 3-dimensional transesophageal echocardiography ini-
tial experience using the fully-sampled matrix array probe,” J
Am Coll Cardiol, Vol. 52, pp. 446-449 (2008); Vergnat, M., et
al., “Ischemic mitral regurgitation: a quantitative three-di-
mensional echocardiographic analysis,” Ann Thorac Surg,
Vol. 91, pp. 157-164 (2011); Veronesi, F., et al., “Semi-auto-
matic tracking for mitral annulus dynamic analysis using
real-time 3D echocardiography,” Computers in Cardiology,
Vol. 33, pp. 113-116 (2006); and Wei, I., et al., “The routine
use of live three-dimensional transesophageal echocardio-
graphy in mitral valve surgery: clinical experience,” Fur J
Echocardiogr, Vol. 11, pp. 14-18 (2010)). Comprehensive
evaluation of 3D valve morphology is essential for the diag-
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nosis and surgical treatment of many valvular heart diseases,
especially those associated with complex morphological
abnormalities. Ischemic mitral regurgitation, in particular,
manifests as a variable combination of distortions in valve
geometry: annular dilatation and apical leaflet tethering.
These distortions are patient-specific and underscore distinct
pathophysiologic mechanisms and abnormalities.

3D examination of patient-specific valve anatomy is a pre-
requisite for disease characterization and selection of appro-
priate surgical treatment strategies. 3D TEE has been dem-
onstrated to be a valuable tool in preoperative surgical
planning (Garcia-Orta, R. et al., “Three-Dimensional versus
two-dimensional transesophageal echocardiography in
mitral valve repair, J. Am. Soc. Echocardiogr., Vol. 20, pp.
4-12 (2007)), intraoperative guidance (Eng, M. H., et al.,
“Implementation of real-time three-dimensional transesoph-
ageal echocardiography in percutaneous mitral balloon val-
vuloplasty and structural heart disease interventions,”
Echocardiography, Vol. 26, pp. 958-966 (2009); Swaans, M.
J., et al., “Three-dimensional transesophageal echocardio-
graphy in a patient undergoing percutaneous mitral valve
repair using the edge-to-edge clip technique,” Fur J Echocar-
diogr,Vol. 10, pp. 982-983 (2009)), and immediate and long-
term follow-up to determine the need for further cardiological
surgical intervention (De Castro, S., et al., “Qualitative and
quantitative evaluation of mitral valve morphology by intra-
operative volume-rendered three-dimensional echocardio-
graphy,” J. Heart Valve Dis., Vol. 11, pp. 173-180 (2002)).
However, the limitation of the current commercial 3D TEE
imaging platforms is that they provide visually impressive
3DE image volume renderings, but enable only a limited
number of quantitative measurements to be made off-line
with somewhat cumbersome user interaction. The existing
3D TEE image analysis tools are therefore impractical and
inadequate for use in quantitative image-based surgical plan-
ning.

To increase the practicality and ease of mitral valve quan-
tification with 3D TEE, several semi-automatic and one fully
automatic method for mitral leaflet segmentation have been
proposed by R. 1. Ionasec, et al., “Patient-specific modeling
and quantification of the aortic and mitral valves from 4-D
cardiac CT and TEE,” IEEFE Trans Med Imaging, vol. 29, pp.
1636-51, September 2010; P. Burlina, et al., “Patient-specific
modeling and analysis of the mitral valve using 3D-TEE,” in
Lecture Notes in Computer Science. vol. 6135, ed, 2010, pp.
135-146; Pouch, A. M., et al., “Development of a semi-auto-
mated method for mitral valve modeling with medial axis
representation using 3D ultrasound,” Med Phys, Vol. 39, pp.
933-950(2012); and Schneider, R. J., et al., “Modeling mitral
valve leaflets from three-dimensional ultrasound,” Lecture
Notes in Computer Science, Springer-Verlag, pp. 215-222
(2011)). The goal of these techniques is to derive quantitative
measurements and 3D visualizations of annular and leaflet
geometry from 3D TEE images. The methods vary in the
extent of requisite user interaction and the level of detail with
which the mitral leaflets are represented.

FIG. 1 illustrates several of the challenges specific to mitral
leaflet and annular segmentation in 3D TEE images. In FIG.
1, cross-sectional images of 3D TEE image volumes at dias-
tole (left and center) and systole (right) illustrate the chal-
lenges specific to mitral leaflet segmentation. The top arrows
points toward points on the annulus, showing that there is no
image-based boundary between the mitral leaflets and adja-
cent tissue to which the leaflets are attached. The lower arrow
in the left and center images points towards the posterior
leaflet at diastole, which is often pressed against the ventricu-
lar wall and is characterized by signal dropout. The lower
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arrow in the right image points to the coaptation zone of the
leaflets at systole, showing there is no intensity-based demar-
cation between the anterior and posterior leaflets. As shown in
FIG. 1, there is no intensity-based boundary between the
leaflets and adjacent heart tissue, making it difficult to iden-
tify the annulus and leaflet boundaries based in image inten-
sity information alone. Also, the posterior leaflet often gets
pressed against the left ventricular wall during diastole and is
characterized by signal dropout, making it difficult for an
automated segmentation algorithm to capture posterior leaflet
geometry when the valve is open. In addition, the anterior and
posterior leaflets are difficult to distinguish in the coaptation
zone during systole since there is no intensity-based distinc-
tion between the two leaflets.

To address these challenges, Schneider and colleagues in
Schneider, R. J., et al., “Patient-specific mitral leaflet segmen-
tation from 4D ultrasound,” Med Image Comput Assist Interv,
Vol. 14, pp. 520-527 (2011) present a multi-stage method for
segmenting the open mitral leaflets in 3D TEE data sets,
wherein the leaflets are represented by a discrete mesh. First,
the mitral annulus is semi-automatically segmented as
described by Schneider, R. J., et al., in “Mitral annulus seg-
mentation from 3D ultrasound using graph cuts,” IEEE Trans
Med Imaging, Vol. 29, pp. 1676-1687 (2010), and an initial
leaflet search space is defined in the image volume. The
search space is subsequently refined, and the leaflet surfaces
are estimated using graph cut and active contour methods.
This technique requires some minimal user interaction to
generate patient-specific leaflet representations. Ionasec and
colleagues describe a fully automatic technique for segment-
ing and tracking the aortic and mitral leaflets in computed
tomography and 3D TEE data. Given a large database of
manually labeled images, machine learning algorithms are
used to globally locate and then track several valve landmarks
throughout the cardiac cycle. Leaflet geometry is subse-
quently represented by a parametric model fitted through
these points. While this method is fully automated and estab-
lishes correspondences, the use of sparse landmarks poten-
tially limits patient-specific detail of leaflet geometry. The
techniques described by Schneider et al. and Ionasec et al.
both represent the mitral leaflets as a single surface, rather
than structures with thickness. Alternatively, Burlina etal. use
3D active contours and thin tissue detection to recover mitral
leaflet geometry at end-diastole in 3D TEE image data. While
this method captures detail of leaflet geometry, it requires
user initialization and manual refinement. Several other tech-
niques, largely based on manual leaflet tracing in either cus-
tom or commercial software, have also been proposed (Verg-
nat et al. (2011); Tsukiji, M., et al., “3D quantitation of mitral
valve coaptation by novel software system with transthoracic
real-time 3D echocardiography,” Circulation, Vol. 114, pp.
716-717(2006); and Veronesi et al., (2006)). While these
techniques provide spatially dense, expert-defined represen-
tations of leaflet and annular geometry, they are the most labor
intensive methods.

Although automatic 3D quantification tools have signifi-
cant implications for diagnostics and surgical care, the exist-
ing methodologies remain labor and time intensive. Methods
that reduce inter-observer variability in 3D TEE image analy-
sis would maximize its practicality for use at the bedside and
in the operating room (Lang, R. M., and Adams, D. H., “3D
echocardiographic quantification in functional mitral regur-
gitation,” JACC Cardiovasc Imaging, Vol. 5, pp. 346-347
(2012)). A goal of the present invention is to develop an
alternative, leaflet segmentation method that is fully auto-
mated, captures patient-specific detail, represents the leaflets
with finite thickness, and establishes correspondences on
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valves of different subjects. To accomplish these goals, the
inventors propose a segmentation technique that integrates
probabilistic segmentation and geometric modeling tech-
niques. These complementary methods are multi-atlas joint
label fusion and deformable modeling with continuous
medial representation (cm-rep).

Cme-rep is a type of shape representation that describes an
object in terms of its medial geometry, i.e. a radial thickness
field mapped to a skeleton, or medial axis (Pizer, S. M., etal.,
“Deformable m-reps for 3D medical image segmentation,”
International Journal of Computer Vision, Vol. 55, pp. 85-106
(2003); and Yushkevich, P. A., et al., “Continuous medial
representation for anatomical structures,” IEEE Trans Med
Imaging, Vol. 25, pp. 1547-1564 (2006)). The representation
has been used to model various anatomical shapes, including
the hippocampus (Yushkevich, P. A., “Continuous medial
representation of brain structures using the biharmonic PDE,”
Neuroimage, Vol. 45, pp. S99-110 (2009)) and cardiac ven-
tricles (Sun, H., et al., “Automatic cardiac MRI segmentation
using a biventricular deformable medial model,” Med Image
Comput Assist Interv, Vol. 13, pp. 468-475 (2010)), and is
especially useful for modeling thin, sheet-like structures. The
inventors have previously shown that cm-rep is an appropriate
shape model for describing mitral leaflet and annular geom-
etry (Pouch et al., 2012). It establishes correspondences on
different valve shapes and facilitates measurement of clini-
cally relevant features of annular and leaflet geometry. In
earlier work by the present inventors, the cm-rep of a given
valve shape is obtained by deforming a pre-defined template
by Bayesian optimization to match a user-initialized segmen-
tation of the leaflets (Pouch, A. M., et al., “Semi-automated
mitral valve morphometry and computational stress analysis
using 3D ultrasound,”J Biomech, Vol. 45, pp. 903-907 (2012);
Pouch et al, 2012). This user-initialized segmentation
method, based on 3D active contours with region competi-
tion, requires multiple interactive steps to identify valve loca-
tion in the image volume, establish boundaries between the
leaflets and adjacent heart tissue, and estimate a threshold to
guide region competition. In the present invention, the need
for user initialization is completely eliminated with the use of
multi-atlas joint label fusion to generate probabilistic seg-
mentations that guide model fitting.

Given a target image to segment, multi-atlas joint label
fusion registers a set of manually labeled atlases of the mitral
leaflets to the target image and propagates the segmentation
labels to this target image. Joint label fusion assigns weights
to the labels of different atlases based on the similarity
between the atlas and target image, as well as the similarity
between different atlases (Wang, H. Z., et al., “Multi-Atlas
Segmentation with Joint Label Fusion,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 35, pp.
611-623 (2013). Although label fusion alone can generate
segmentations of the mitral leaflets, the technique does not
preserve leaflet topology or assign correspondences to differ-
ent valve shapes. A method is desired that overcomes these
challenges and the other challenges note above.

SUMMARY

To overcome the above-mentioned challenges, the proba-
bilistic segmentation obtained with joint label fusion is incor-
porated as the likelihood term of the objective function opti-
mized during deformable modeling with cm-rep. In effect, a
model-based Bayesian segmentation of the target image is
performed, where joint label fusion specifies the likelihood
and the regularization terms imposed by cm-rep act as shape
priors that preserve leaflet topology and constrain model fit-
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ting. The inventors’ demonstrate that these two complemen-
tary techniques generate accurate, patient-specific represen-
tations of mitral leaflet geometry without any need for user
interaction. The segmentation method is applied to different
time points in the cardiac cycle, mid-systole and mid-dias-
tole, to test if it can effectively capture different geometric
configurations of the mitral leaflets. Those skilled in the art
will further appreciate that the methods described herein may
be used to automatically segment aortic, pulmonic, and/or
tricuspid valves in addition to the mitral valve.

In particular, the present invention provides a fully auto-
mated leaflet segmentation method that captures patient-spe-
cific detail, represents the leaflets as structures with locally
varying thickness, and establishes correspondences on valves
of different subjects. The algorithm is for analyzing 3D
images of, for example, the mitral valve and provides a plat-
form for visual and quantitative assessment of in vivo mitral
valve morphology, which can assist in pre-operative planning
of mitral valve repair surgery. The technique of the invention
combines probabilistic segmentation and geometric model-
ing methods: multi-atlas joint label fusion and deformable
modeling with continuous medial representation (cm-rep).
The approach is based on one-time development of reference
atlases (manually labeled 3D images) of the mitral valve by
experts and using them (instead of user input) to generate a
probabilistic guide to image segmentation. In addition, the
method includes one-time development of a deformable tem-
plate (cm-rep) that the user interactively creates. The final
image segmentation is obtained by automatically deforming
this template under the guidance of the probabilistic segmen-
tation generated from reference atlases. Except for this one-
time need to develop reference atlases and a deformable tem-
plate, which requires user input, the method does not require
expert knowledge for segmentation and geometric modeling
and is thus fully automated. The method captures patient-
specific morphological detail, represents the leaflets with
finite thickness, and establishes correspondences on valves of
different subjects. These methods are integrated in a model-
based Bayesian segmentation framework. Results are shown
for 3D TEE images acquired at mid-diastole, when the mitral
leaflets are easily distinguished.

The algorithm for analyzing 3D images, such as 3D ultra-
sound images, of the mitral valve has two components: proba-
bilistic segmentation ofthe 3D ultrasound image and geomet-
ric modeling ofthe valve. Using the mitral valve template and
the probabilistic segmentation as input, multi-atlas label
fusion and deformable modeling creates a 3D geometric
model of the mitral leaflets in a 3D TEE target image. The 3D
geometric models may then be used to assist in the diagnosis
of'mitral valve disease, to guide surgical interventions such as
mitral valve repair, and as input to biomechanical formula-
tions of valve function.

In an exemplary embodiment, the method includes captur-
ing a target mitral valve image and fitting a deformable model
of the mitral valve to the captured target mitral valve image
using an optimization algorithm, such as a Bayesian optimi-
zation algorithm, to create a patient-specific geometric model
of'the patient’s mitral valve. In this model fitting process, the
Bayesian likelihood is given by the multi-atlas joint label
fusion probabilistic segmentation maps and the prior prob-
ability is based on constraints in the cm-rep geometric mod-
eling framework. The method includes acquiring a 3D target
image to segment, registering the image atlases to the target
image and propagating atlas labels to the target image to
obtain a set of candidate segmentations, generating a proba-
bilistic consensus segmentation using joint label fusion, and
applying 3D deformable modeling to the probabilistic con-
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sensus segmentation to generate a 3D geometric model of the
mitral leaflets and/or annulus in the target image. The multi-
atlas joint label fusion process is desirable in that it uses a
spatially varied weighted voting scheme and accounts for
redundancies in the atlas set. The multi-atlas joint label fusion
process also provides a fully automated probabilistic segmen-
tation method that encodes knowledge of valve shape and
image appearance. Deformable medial modeling, on the
other hand, preserves topology, enforces correspondences,
and imposes regularization constraints to provide a useful
shape representation for clinical morphometry. Deformable
modeling with cm-rep also corrects for labeling inaccuracies
and topological inconsistencies.

Those skilled in the art will appreciate that the methods of
the invention are not limited to transesophageal echocardio-
gram images but may also be applied to transthoracic
echocardiogram images as well. Also, those skilled in the art
will appreciate that the methods described herein may be used
to automatically segment aortic, pulmonic, and/or tricuspid
valves in addition to the mitral valve. These and other varia-
tions of the invention will be apparent from the following
detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The various novel aspects of the invention will be apparent
from the following detailed description of the invention taken
in conjunction with the accompanying drawings, of which:

FIG. 1 illustrates several of the challenges specific to mitral
leaflet and annular segmentation in 3D TEE images.

FIG. 2 illustrates a schematic of the automatic segmenta-
tion algorithm in accordance with an exemplary embodiment
of the invention.

FIG. 3 illustrates generation of a set of 3D TEE atlases of
the mitral valve and construction ofa 3D deformable template
of'the open leaflets.

FIG. 4 illustrates the segmentation and geometric model-
ing of the mitral leaflets for a given subject.

FIGS. 5 and 6 illustrate examples of manual and automatic
segmentations of open and closed mitral leaflets.

FIG. 7 illustrates an example of an open leaflet segmenta-
tion in which multi-atlas label fusion produced leaflet label-
ing errors and topological inconsistencies due to registration
errors.

FIG. 8 presents the accuracy of each intermediate step and
the output of fully automated image analysis at mid-diastole
and mid-systole.

FIG. 9 (top row) illustrates maps of the localized distances
between the manual and automatic segmentations for the
open and closed leaflets, and FIG. 9 (bottom row) illustrates
that the largest discrepancies in anterior and posterior leaflet
labeling occur in the tissue adjacent to the commissures.

FIG. 10(a) provides atrial views of six normal mitral valves
as obtained using the presently disclosed methods. FIG. 10(6)
provides atrial views of six myxomatous mitral valves with
posterior leaflet defects.

FIG. 11 illustrates mean models of a myxomatous mitral
valve (left) and normal mitral valve (right), shown to scale.
Leaflet thickness is displayed using shading.

FIG. 12 shows the mean+standard deviation of the annular
height to commissural width ratio (AHCWR) plotted as a
function of rotation position along the mitral annulus. The
AHCWR curve for the myxomatous valves and for the nor-
mal valves, respectively are shown. Statistically significant
differences in regional AHCWR are indicated in gray.
(AAoP=anterior aortic peak of the annulus, PCM=posterior
commissure, ACM=anterior commissure).
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FIG. 13 shows a mitral valve with posterior leaflet prolapse
(left) and normal morphology (right) from atrial and medial
viewpoints. The portion of the posterior leaflet above the
posterior annular plane, whose bounds are indicated by the
square, is shown.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

The invention will be described in detail below with refer-
ence to FIGS. 2-13. Those skilled in the art will appreciate
that the description given herein with respect to those figures
is for exemplary purposes only and is not intended in any way
to limit the scope of the invention. All questions regarding the
scope of the invention may be resolved by referring to the
appended claims.

Methods

1. Image Acquisition

Twenty patients undergoing cardiac surgery at the Univer-
sity of Pennsylvania were imaged pre-operatively using real-
time 3D TEE. This cohort included 6 subjects with normal
mitral valve anatomy and function, 6 subjects with mild
mitral regurgitation undergoing surgery for either coronary
artery or aortic valve disease, and 8 subjects with severe
ischemic mitral regurgitation undergoing mitral valve repair
surgery. The imaging protocol was approved by the Univer-
sity of Pennsylvania School of Medicine Institutional Review
Board. All studies were performed after induction of general
anesthesia and before initiation of cardiopulmonary bypass.
Electrocardiographically gated full-volume images were
acquired with the iE33 platform (Philips Medical Systems,
Andover, Mass.) using a 2 to 7 MHz transesophageal matrix-
array transducer over four consecutive cardiac cycles. No
restrictions were specified for the orientation or angulation of
the transesophageal probe. The frame rate was 17 to 30 Hz,
and the imaging depth was 12 to 16 cm. From each subject’s
data series, 3D TEE images of the mitral valve at mid-systole
and mid-diastole were selected for analysis. These 3D TEE
images were exported in Cartesian format (224x208x208
voxels), with an approximate isotropic resolution 0of 0.6 t0 0.8
mm.

2. Manual Segmentation

The 40 images selected for analysis were traced in ITK-
SNAP (Yushkevich, P. A, et al., “User-guided 3D active
contour segmentation of anatomical structures: significantly
improved efficiency and reliability,” Neuroimage, Vol. 31, pp.
1116-1128 (2006)), an open-source software package for
medical image segmentation. The 40 images consisted of two
per subject, one acquired at diastole and one at systole. An
expert observer manually segmented the anterior and poste-
rior leaflets in their entirety, associating the two leaflets with
separate labels (label 1=anterior leaflet, label 2=posterior
leaflet). All unmarked voxels were assigned label O, corre-
sponding to the image background. The final products of
manual segmentation were two separate atlas sets: one con-
sisting of 20 labeled images at diastole and the second con-
sisting of 20 labeled images at systole. Manual segmentation
was performed without knowledge of mitral valve pathology.

3. Automatic Segmentation

A schematic of the automatic segmentation algorithm is
presented in FIG. 2. In FIG. 2, the input is shown in light gray
and the intermediate products and output are shown in dark
gray. First, a set of 3D TEE atlases of the mitral leaflets is
generated and a deformable medial model is constructed.
Atlas and template generation is performed once. Given a 3D
target image to segment, the atlases are registered to the target
image and the atlas labels are propagated to the target image
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to obtain a set of candidate segmentations. Joint label fusion
generates a probabilistic consensus segmentation, which is
used to guide 3D deformable modeling. The output of the
algorithm is a 3D geometric model of the mitral leaflets in the
target image. As shown in FIG. 2, firsta set of 3D TEE atlases
of the mitral valve are generated and a 3D deformable tem-
plate of the open leaflets is constructed (FIG. 3). As shown in
FIG. 3, cm-rep template of the open mitral leaflets used for
deformable modeling. FIG. 3(a)-(b) illustrate the medial
manifold of the template as a triangulated mesh, with lighter
nodes referring to the anterior leaflet and darker labels refer-
ring to the posterior leaflet. The mitral annulus is represented
by the bold black curve on the outer medial edge. FIG. 3(c)
illustrates the boundary constructed analytically from the
medial manifold, given a constant radial thickness for initial-
ization. The two steps of generating a set of 3D TEE atlases of
the mitral valve and constructing a 3D deformable template of
the open leaflets are performed once. Given an unseen 3D
TEE target image to segment, the atlases are registered to the
target image to obtain a set of candidate segmentations. Sub-
sequently, joint label fusion generates a probabilistic consen-
sus segmentation of the target image, which is used to guide
3D deformable medial modeling. The output is a 3D geomet-
ric model of the mitral leaflets in the target image volume.

FIG. 4 illustrates the segmentation and geometric model-
ing of the mitral leaflets for a given subject. Segmentation of
the diastolic image volume is performed first. Then, segmen-
tation of the systolic image volume is performed using the
same subject’s open-valve medial model for initialization of
closed-valve model fitting. FIG. 4 illustrates automatic seg-
mentation of the mitral leaflets at diastole (top row) and
systole (bottom row) for a given patient. First, a probabilistic
segmentation is generated by multi-atlas label fusion (light
shading=anterior leaflet, dark shading=posterior leaflet).
Then the cm-rep template (translucent) is initialized to the
multi-atlas segmentation and the template is deformed to
obtain a medial model of the mitral leaflets. The medial tem-
plate shown in FIG. 3 is used for model initialization at
diastole, and the fitted diastolic model is used to initialize
model fitting of the same subject’s valve at systole. Back-
ground information on these methods is presented in Sections
3.1 and 3.2 below.

3.1. Multi-Atlas Joint Label Fusion

Multi-atlas label fusion is a segmentation strategy that has
been applied to a number of medical image segmentation
problems, most notably magnetic resonance imaging of the
brain (Artaechevarria, X., et al., “Combination strategies in
multi-atlas image segmentation: application to brain MR
data,” IEEE Trans Med Imaging, Vol. 28, pp. 1266-1277
(2009); Heckemann, R. A., et al., “Automatic anatomical
brain MRI segmentation combining label propagation and
decision fusion,” Neuroimage, Vol. 33, pp. 115-126 (2006);
Lotjonen, J. M., et al., “Fast and robust multi-atlas segmen-
tation of brain magnetic resonance images,” Neuroimage,
Vol. 49, pp. 2352-2365 (2010); and Svarer, C., et al., “MR-
based automatic delineation of volumes of interest in human
brain PET images using probability maps,” Neuroimage, Vol.
24, pp. 969-979 (2005). The method makes use of a set of
expert-labeled atlases, where each atlas consists of a sample
image and a set of labels for the anatomic structures in that
image. When a new target image is presented for segmenta-
tion, each atlas image is registered to the target image. The
deformation fields obtained by registration are then used to
propagate the atlas labels to the target image. Depending on
dissimilarities in anatomy and appearance between the atlas
and target images, each atlas produces a different segmenta-
tion of the target image. Multi-atlas label fusion strategies
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combine these results, either by majority or weighted voting,
to produce a consensus or probabilistic segmentation of the
target image.

Majority voting methods count votes for each label from
each atlas and select the label receiving the majority of votes
to produce the final segmentation (Hansen, L. K., and Sala-
mon, P., “Neural Network Ensembles,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 12, pp. 993-
1001 (1990); Kittler, J., “Combining classifiers: A theoretical
framework,” Pattern Anal Appl, Vol. 1, pp. 18-27 (1998)).
Alternatively, in weighted voting methods, each atlas contrib-
utes to the final segmentation according to a weight, with
atlases more similar to the target image receiving higher
weights (Heckemann et al., 2006; Isgum, 1., et al., “Multi-
atlas-based segmentation with local decision fusion—appli-
cation to cardiac and aortic segmentation in CT scans,” I[EEE
Trans Med Imaging, Vol. 28, pp. 1000-1010 (2009); Sabuncu,
M. R., et al., “Image-Driven Population Analysis Through
Mixture Modeling,” IEEE T Med Imaging, Vol. 28, pp. 1473-
1487 (2009)). In some cases, information from atlases that are
globally or locally dissimilar to the target image will be
discarded during voting (Artaechevarria et al., 2009; Collins
and Pruessner, “Towards accurate, automatic segmentation of
the hippocampus and amygdala from MRI by augmenting
ANIMAL with a template library and label fusion,” Neuroim-
age, Vol. 52, pp. 1355-1366 (2010)). It has been demonstrated
that voting methods with spatially varying weights derived
from local similarities between the atlas and target image are
most effective in practice (Artaechevarria et al., 2009; Isgum
et al., 2009; Sabuncu et al., 2009). The drawback of many
majority and weighted voting methods, however, is that they
assign weights to each atlas independently without consider-
ing similarities between different atlases. In other words, the
methods assume that errors produced by different atlases are
uncorrelated. This assumption can lead to labeling inaccura-
cies caused by replication or redundancy in the atlas set.

Joint label fusion is an extension of multi-atlas label fusion
with weighted voting that reduces segmentation errors pro-
duced by redundancies in the atlas set (Wang et al., 2013).
When computing voting weights, the method accounts for
both similarity between each atlas and the target as well as
similarity between atlases, under the assumption that the
expected label error produced by one atlas is large when the
image intensity difference between the warped atlas and tar-
get image is large. The expectation that any two atlases both
produce a label error is large only when both atlases have
large intensity differences from the target image. As
described by Wang and colleagues (2013), weighted voting is
formulated in terms of minimizing the total expected labeling
error in the final estimated segmentation, which requires
knowledge of the expected pairwise joint label differences
between the atlas and target images. Since this information is
unknown, the joint label differences are explicitly modeled
and estimated based on local intensity similarities between
the atlases and target image. Spatially-varying voting weights
are efficiently solved in a closed form. The result of multi-
atlas joint label fusion is a probabilistic segmentation, where
each voxel in the target image space is assigned a probability
of having a given label. A final segmentation is produced by
assigning each voxel the label with the greatest probability.

In accordance with the method of the invention, intensity-
based registration is performed between all pairs of reference
atlases, as well as between all reference atlases and the target
image. Registration includes two stages. First, the FSL
FLIRT tool (Jenkinson, M., and Smith, S., “A global optimi-
sation method for robust affine registration of brain images,”
Med Image Anal, Vol. 5, pp. 143-156 (2001)) is used to
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perform global registration with six degrees of freedom. Sec-
ond, the ANTS Symmetric Normalization algorithm (Avants,
B. B, et al., “Symmetric diffeomorphic image registration
with cross-correlation: evaluating automated labeling of eld-
erly and neurodegenerative brain,” Med Image Anal, Vol. 12,
pp- 26-41 (2008)) is used to perform deformable registration.
Cross-correlation is the similarity metric used for registra-
tion, and a Gaussian regularizer with sigma=3 is applied.
Finally, each atlas is warped into the target image space using
the obtained deformation fields, generating a candidate seg-
mentation of the target image. The candidate labels are then
fused to create probabilistic consensus segmentation accord-
ing to the method described in Wang et al., 2013.

3.2. Deformable Modeling with Continuous Medial Rep-
resentation

Once probabilistic segmentations are generated with
multi-atlas joint label fusion, the mitral leaflets are geometri-
cally modeled using cm-rep, a continuous form of medial
representation (Yushkevich, 2009). Briefly, a medial model is
a type of shape representation that describes an object’s
geometry in terms of its skeleton, or medial axis. Blum, H., in
“A transformation for extracting new descriptors of shape,”
In: Wathen-Dunn, W. (Ed.), Models for the Perception of
Speech and Visual Form, MIT Press, Cambridge, pp. 362-380
(1967) has defined the medial axis of an object as a locus of
the centers of maximal inscribed balls (MIBs) that lie inside
the object and cannot be made any larger without crossing the
object boundary. The center of each MIB is associated with a
radius R, the distance between that point on the skeleton and
the object boundary. While there are a number of methods for
defining or extracting an object’s medial geometry, cm-rep
makes use of deformable modeling and inverse skeletoniza-
tion (Pizer et al., 2003; Yushkevich et al., 2006). The tech-
nique begins with a deformable medial model, or template, of
an object with pre-defined topology. The skeleton of the
model is explicitly represented as a set of continuous para-
metric manifolds m: Q— R?>, QeR?> and object thickness
R:Q— R ™ is modeled parametrically as a scalar field defined
over the skeleton. Given a new instance of the object, the
template is deformed through Bayesian optimization such
that the object’s skeleton is defined first, and then the object
boundary is derived analytically from the skeleton. The result
is a fitted cm-rep of the object that describes its shape in terms
of medial geometry, a radial thickness field R mapped to one
or more medial manifolds m. An advantage of deformable
medial modeling is that it imposes a shape-based coordinate
system on the object and thereby establishes correspondences
on different instances of that object. Moreover, it ensures that
different instances of the object have consistent topology,
which is not necessarily guaranteed by other shape recovery
methods.

In accordance with the methods of the invention, the
deformable cm-rep of the mitral leaflets is represented by a
single non-branching medial manifold illustrated in FIG. 3.
The manifold is discretely represented as a triangulated mesh
using a Loop subdivision surface scheme and is constructed
in a manner similar to that described in Pouch et al., 2012. In
this approach, the template is generated by computing the
Voronoi skeleton of a pre-existing open-valve segmentation,
pruning the skeleton to obtain the desirable single-sheet
branching structure, fitting the single-sheet skeleton with a
parametric surface, and triangulating. The segmentation used
to create the template is from a single subject (not included as
an atlas herein), but the steps described above cause the shape
to undergo considerable smoothing and simplification so that
it becomes a rather generic representation of the open mitral
leaflets shown in FIG. 3. The inventors have demonstrated in
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Pouch et al., 2012 that the performance of cm-rep model
fitting to mitral leaflet segmentations is robust to the choice of
the data set used to generate the template. Unlike the inven-
tors’ previous work, the anterior and posterior leaflets are
represented in the present methods by a single labeled medial
manifold, rather than separate manifolds for each leaflet. The
medial mesh has 146 control points. Each control point is a
tuple of values (m, R, L), where m=(m,,m,.m,) are the point
coordinates in R >, R is the radial thickness or distance from
that node to the leaflet’s atrial and ventricular surfaces, and L
is a label corresponding to either the anterior or posterior
leaflet. The nodes on the outer medial edge correspond to the
mitral annulus, and the nodes on the inner medial edge cor-
respond to the free edges of the leaflets. In FIG. 3, the anterior
leaflet nodes are lightly shaded, the posterior leaflet nodes are
darkly shaded, and the mitral annulus is demarcated by a bold
black curve. When the model is fitted to image data, the
control point mesh is subdivided by applying using Loop
subdivision surface rules twice, which results in a mesh with
1886 vertices. The boundary mesh is derived from the subdi-
vided medial mesh using inverse skeletonization and has
3504 vertices.

To capture leaflet geometry in a target image, the cm-rep
template is deformed such that the negative log of a Bayesian
posterior probability is minimized. The Bayesian objective
function consists of a likelihood term, regularization prior,
and penalties used to ensure that inequality constraints
required for inverse skeletonization are met:

=log(p(M | I)) ~ Wiiketinood * Tiiketinood +

Z Wregularity; * Tregutari; + Z Waaiidiy ;* Tvatidity ;
i J

Here, p(MII) In is the probability of observing the model M
given the target image I, and w are the relative weights of
terms T. The first term in Eq. 1, T}, 55004 15 proportional to
the negative log of p(IIM), the probability of observing the
target image I given the model M. This term is driven by the
probability maps given by multi-atlas joint label fusion. The
sum of the weighted terms T,,,, 7,1, a0d T, 5,4, 1S propor-
tional to the negative log of p(M), the prior probability
enforced by constraints in the cm-rep deformable modeling
framework.

The likelihood of the Bayesian posterior energy is con-
structed as a probability integral term that utilizes the proba-
bilistic segmentation maps, P/(x), generated by multi-atlas
joint label fusion. Suppose that P(x) is the probability of
voxel x having the label 1, where 1 has three possible values: 0
(background), 1 (anterior leaflet), and 2 (posterior leaflet).
The likelihood is formulated as follows:

by i
—togtp(t | py ~ 117 O

volume

where | indexes through each label, x indexes through the
image voxels, I, .. is the target image volume given in
pixels, and M, represents the part of the model M associated
with label 1. Here, M, and M, refer to the anterior and poste-
rior leaflets and M, refers to the exterior of the model. Note
that this term samples probabilities over the entire target
image domain. For segmentation of the open leaflets, P/(x)
ranges from O to 1. For segmentation of the closed leaflets,
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P/(x) is either O or 1, where the value 1 is assigned to the label
with the highest probability at x. The use of binary values for
P’(x) at systole strengthens model fitting in the coaptation
zone since the closed leaflets are most challenging to distin-
guish in this region and probability assignments are relatively
low.

The second set of terms in Equation 1 constitutes the regu-
larization prior that controls the smoothness of the outer
medial edge and penalizes non-uniform expansion and con-
traction of the mitral leaflets during model fitting. Given N
nodes on the outer edge of the triangulated medial mesh, the
first regularization term consists of two components. The first
component penalizes the angle between adjacent normal vec-
tors around the medial edge, and the second penalizes the
angle between consecutive line segments along the outer
medial edge:

N
Treguarityy = ) [(1 = cos(8;)) + (1 = cos(g)]
i=1

i

where 6, is the angle between the outward normals at adja-
cent outer edge nodes m, and m,, ;, and ¢, is the angle between
adjacent line segments formed by nodes m, ; and m, and
nodes m; and m,, ,. In effect, this term prevents twisting and
rippling of the medial manifold’s outer edge during model
deformation.

The second regularization term penalizes non-uniform
expansion and contraction of the mitral leaflets. This term has
alow weight during open leaflet model fitting, when it is used
to strengthen correspondences on the valves of different sub-
jects. The term has a higher weight during closed leaflet
fitting, when the open leaflet model for a given subject is
deformed to estimate the closed valve geometry. In this case,
the term is primarily used to ensure accurate correspondences
on the same subject’s valve at different time points. The term
has two components: a medial Jacobian distortion penalty
and boundary Jacobian distortion penalty, which penalize the
Jacobians of the medial manifold and leaflet boundaries,
respectively. The term is formulated as follows:

A ]+v log( A ]
b
Amref Ap ref

where A, and A, refer to the area of triangles on the medial
manifold and model boundary, A, -and A, _refer the area
of'the triangles prior to model deformation, and V,, and V, are
the gradients over the medial manifold and model boundary.

The last five terms in the objective function, {T,,; a1
2,...,5}, ensure that the cm-rep is an example of valid medial
geometry. The inequality constraints required for valid
medial geometry have been previously outlined and pre-
sented in detail (Pouch et al., 2012; Yushkevich, 2009).
Briefly, the first penalty prevents singularities on the medial
model boundary by ensuring that the Jacobian of the medial-
boundary mapping is positive. The second term ensures that
the radial thickness field R remains positive during model
fitting, i.e. R>0. The third constrains V, R at non-edge medial
nodes to ensure valid derivative computation for inverse skel-
etonization. The fourth term prevents degenerate tangent vec-
tors at boundary vertices, and the fifth prevents overlaps and
self-intersections in the medial model.

To initialize deformable modeling with cm-rep at diastole,
an affine transform is obtained by registering images of the

Tregutarityy = Vm 10%(
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deformable template and the multi-atlas segmentation result
with the robust point matching algorithm (Papademetris, X.,
et al., “Computing 3D non-rigid brain registration using
extended robust point matching for composite multi-subject
fMRI analysis,” Medical Image Computing and Computer-
Assisted Intervention—Miccai 2003, Pt 2, Vol. 2879, pp. 788-
795 (2003)) first and then with the FSL FLIRT tool (Jenkin-
son and Smith, 2001). To obtain the initialization transform
for systole, multi-label images of the open-leaflet template
and closed-valve multi-atlas segmentation are registered with
the Advanced Normalization Toolkit (Avants, B. B, et al., “A
reproducible evaluation of ANTs similarity metric perfor-
mance in brain image registration,” Neuroimage, Vol. 54, pp.
2033-2044 (2011)). The template used for initialization of
open leaflet modeling is the one shown in FIG. 3, and closed
leaflet model fitting is initialized with a rigidly transformed
open leaflet model from the same subject. Open and closed
leaflet segmentation and deformable modeling are performed
sequentially, as shown in FIG. 4. Deformable model fitting is
performed by minimizing Eq. 1 by conjugate gradient
descent.

The weights used in the Bayesian objective function are
given by fitting deformable medial models to 3D TEE images
of the mitral leaflets with the guidance of probability maps
generated by multi-atlas label fusion. The objective function
minimized during model fitting takes the form of Equation 1,
where w are the relative weights of terms T. The likelihood
term maximizes the probabilities integrated on the model
interior and minimizes the probabilities integrated in the
background of the model (Equation 2). The regularity terms
(Equations 3 and 4) prevent non-physiological distortions of
the model, and the validity terms enforce inequality con-
straints that are required for valid medial geometry. For both
open and closed leaflet model fitting, two deformation stages
are used. The table below summarizes the terms and weights
used in the objective function during each stage of model
fitting. The weights used in closed leaflet model fitting are
shown in parentheses where they differ from those used in
open leaflet model fitting.

The weights for the validity and regularity terms were
manually selected such that the individual contributions of
these terms to the Bayesian objective were on the same order
of'magnitude, at least one order of magnitude smaller than the
likelihood term. The regularity terms are weighted differently
for closed and open leaflet model fitting to accommodate for
differences in the probability values used in the likelihood
term. Additionally, the leaflet overlap constraint is weighted
more heavily for closed leaflet model fitting, since overlap is
more likely to occur in the coaptation zone of the closed
valve. For all segmentation experiments, the distortion pen-
alty is removed during the second fitting stage to allow the
model to capture finer detail of leaflet geometry.

Term Description Fitting Phase 1 Fitting Phase 2

Tiketinood Multi-label 1 1
probability integral

Tyatidiz, Boundary Jacobian 1073 103
constraint

Tyatidiey Radial thickness 106 10-6
constraint

Tyatiaies Boundary ¥R 0.5 05
constraint

T atiaioy Loop tangent 102 102
constraint

Tyatiaieys Leaflet overlap 107 (10) 107 (0.1)
constraint
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-continued
Term Description Fitting Phase 1 Fitting Phase 2
B U — Medial.edge 0.1 (1.0) 0.1 (1.0)
regularizer
T regutarion Distortion penalty 0.1 (10.0) 0.0

3.3. Comparison of Manual and Automatic Segmentation

Automatic segmentation s tested in a leave-one-out frame-
work, using a separate set of atlases for leaflet segmentation at
systole and diastole. Both sets consist of 20 manually labeled
atlases with separate labels for the anterior and posterior
leaflets. For each segmentation test, an atlas is selected as a
target image for automatic leaflet segmentation, and the
remaining 19 manually labeled atlases are used as references
for joint label fusion. The automatic segmentation is com-
pared to its corresponding manual segmentation based on
mean boundary displacement (MBD). To ensure a symmetric
measurement, MBD is the average of the distances measured
from the manual to automated segmentation and from the
automated to manual segmentation. Given two meshed
shapes P and Q, MBD is defined as follows:

MBD=Y4(d(P.Q)+d(Q.F)), 5]

where d(P,Q) is the distance from P to Q and d(Q,P) is the
distance from Q to P. The distance between two meshes is
given by

1
dp, Q)= — infllx - ylldA

p JxepyeQ

where x is a point on mesh P, y is a point on mesh Q, and A,
is the surface area of mesh P.

Results

In the cross-validation segmentation tests, the automatic
method produced valid segmentations of the open and closed
mitral leaflets for 19 of 20 subjects. Image data from the 19
subjects for which segmentation was successful included the
entire left ventricle and mitral valve in the field of view. The
image data from the subject whose segmentation failed had a
smaller field of view excluding most of the left ventricle,
which likely contributed to poor registration results and con-
sequently an invalid segmentation. FIGS. 5 and 6 illustrate
examples of manual and automatic segmentations of open
and closed mitral leaflets. FIG. 5 illustrates automatic and
manual open-leaflet segmentations for two subjects: one with
a normal mitral valve (top row) and one with an incompetent
valve (second row). The left column shows the manual seg-
mentation with the anterior leaflet in light shading and pos-
terior leaflet in dark shading. The center column shows the
automatic segmentation, and the right column shows the
automatic segmentation overlaid on the manual segmenta-
tion. On the other hand, FIG. 6 illustrates automatic and
manual closed-leaflet segmentations for two subjects: one
with a normal mitral valve (top row) and one with an incom-
petent valve (second row). The left column shows the manual
segmentation with the anterior leaflet in light shading and
posterior leaflet in dark shading. The center column shows the
automatic segmentation, and the right column shows the
automatic segmentation overlaid on the manual segmenta-
tion.

FIGS. 5 and 6 qualitatively demonstrate that the automatic
method captures patient-specific detail of the mitral leaflets,
with both normal and pathologic geometries, at two different
time points in the cardiac cycle. FIG. 7 presents an example of



US 9,406,142 B2

15

an open leaflet segmentation in which multi-atlas label fusion
produced leaflet labeling errors and topological inconsisten-
cies due to registration errors. FIG. 7 illustrates the multi-atlas
segmentation of an open valve, with the anterior leaflet in
light shading and posterior leaflet in dark shading (left). The
fitted cm-rep of the open leaflets is shown in the center image.
The fitted model is overlaid on multi-atlas segmentation
(right), illustrating that cm-rep corrects for labeling and topo-
logical inconsistencies in multi-atlas segmentation. Nonethe-
less, with the shape constraints imposed by the cm-rep frame-
work, the automatic method generated a valid, accurate
geometric model of the leaflets in the image data.

FIG. 8 presents the accuracy of each intermediate step and
the output of fully automated image analysis at mid-diastole
and mid-systole. In FIG. 8, segmentation results are shown at
diastole (left) and systole (right). The bar graphs show the
mean boundary displacement between the manual segmenta-
tion and each of the following: the candidate segmentations
obtained by single-atlas registration, the consensus segmen-
tation generated by joint label fusion, and the model-based
segmentation created with the deformable cm-rep. The
results are broken down by disease category: all subjects,
subjects with normal mitral valve function, mildly diseased
subjects, and subjects with severe mitral regurgitation. The
mean boundary displacement between the manual segmenta-
tion and each of the following outputs is given: the candidate
segmentations generated by individual atlases, the consensus
segmentation obtained by joint label fusion of the candidate
segmentations, and the model-based segmentation generated
by fitting the deformable medial model to the target image.
The results are broken down into four categories: all subjects
grouped together, subjects with normal mitral valve function,
mildly diseased subjects, and subjects with severe mitral
valve disease. In all categories, the accuracy of the consensus
segmentation was significantly greater than the average accu-
racy of individual candidate segmentations and in some cases
was greater than the best candidate segmentation. The best
individual candidate segmentations had mean boundary dis-
placements ranging between 0.6 to 1.2 mm (diastole) and
between 0.3 and 1.6 mm (systole). These observations dem-
onstrate that joint label fusion improves segmentation accu-
racy when low-quality candidate segmentations are created as
a result of registration error. The accuracy of model-based
segmentation was consistent with that of the consensus seg-
mentation, which is expected since the multi-atlas segmenta-
tion results guide model deformation. Note that the goal of
cm-rep modeling is not necessarily to improve segmentation
accuracy, but to obtain a geometric description that estab-
lishes a shape-based coordinate system on the leaflets.

Table I presents the mean distance between the manual and
automatic segmentations, for both the open and closed leat-
lets. In Table I, mean distances between the automatic and
manual segmentations of the mitral leaflets are shown at
diastole and systole. 95% of points on the manual and auto-
matic segmentations fall within the 95% percentile distance.
The distances are computed for a single-label segmentation
(leaflets combined) and for the anterior and posterior leaflet
segmentations individually. When considering the segmenta-
tion as a whole, the mean distance between the manual and
automatic segmentations was 0.8+0.2 mm (open) and 0.6+0.2
mm (closed). Here, the standard deviation refers to the varia-
tion from the mean distance observed in the 19 successtul
segmentation tests. These distances are on the order of one
voxel, as the average isotropic voxel resolution is roughly 0.7
mm. 95% of points on the manual and automatic segmenta-
tions were less than 1.8 mm apart for the open leaflets and 1.4
mm for the closed leaflets. FIG. 9 illustrates maps showing
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localized mean distance between the automatic and manual
segmentations in millimeters. The results are shown for the
leaflets at systole (left column) and diastole (right column).
Segmentation accuracy is evaluated in terms of a single-label
model (top row) and multi-label model (bottom row), in
which the anterior and posterior leaflet segmentations are
evaluated independently. FIG. 9 (top row) shows maps of the
localized distances between the manual and automatic seg-
mentations for the open and closed leaflets. These maps show
that the largest discrepancies occur around the posterior
annulus and the free edge of the anterior leaflet, indicating
that the manual and automatic segmentations included
slightly different amounts of tissue around the posterior annu-
lus and chordal tissue at the anterior leaflet margin.

TABLE I

mean distance 95% percentile

(mm) distance (mm)
diastole both leaflets 0.8+0.2 1.8
(open  anterior leaflet 09+03 3.7
leaflets) posterior leaflet 1.0£0.3 23
systole  both leaflets 0.6+0.2 14
(closed anterior leaflet 0.8+04 4.5
leaflets) posterior leaflet 1.0£0.3 2.5

When evaluating the anterior and leaflet segmentations
individually, the mean distances between the automatic and
manual leaflet models were: 0.9+0.3 and 1.0+0.3 mm for the
open anterior and posterior leaflets, and 0.8+0.4 and 1.0£0.3
for the closed anterior and posterior leaflets. 95% of points on
the manual and automatic segmentations were within 3.7 and
2.3 mm for the open anterior and posterior leatlets, and within
4.5 and 2.5 mm for the closed anterior and posterior leaflets.
FIG. 9 (bottom row) illustrates that the largest discrepancies
in anterior and posterior leaflet labeling occur in the tissue
adjacent to the commissures.

To examine the effect of reference atlas set construction on
the multi-atlas segmentation results, joint label fusion was
repeated using reference atlases from subgroups of the popu-
lation: (1) subjects with normal mitral valve function or mild
mitral regurgitation, and (2) subjects with severe mitral regur-
gitation. For example, images acquired from normal and
mildly diseased subjects were segmented with atlases from
the same group and then with atlases constructed from
severely diseased subjects only. In these experiments, normal
and mildly diseased subjects were combined into a single
subset, since more than six atlases were needed to generate
valid segmentations for most subjects. Table II presents the
multi-atlas segmentation results produced when subsets of
the original atlas sets are used. In Table II, mean boundary
displacement between the multi-atlas consensus segmenta-
tion and manual segmentation when different reference atlas
subsets are used in a leave-one-out cross-validation experi-
ment. The number of invalid consensus segmentations is indi-
cated in parentheses. Eight atlases from severely diseased
subjects and 11 atlases from normal and mildly diseased
subjects were included in the test. Note that the normal atlas
whose segmentation failed when all reference atlases were
used was excluded from these experiments. The results indi-
cate that consensus segmentation accuracy depends to some
extent on both atlas set size and composition of the reference
atlas set. For one, there were more invalid segmentations
generated when subjects in a given category were segmented
with references atlases from another category. For all tests
except for normal systolic image segmentation, it is notable
that one normal subject’s and one severely diseased subject’s
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segmentations were invalid when either one of the reference
atlas subsets was used. This observation suggests that seg-
mentation accuracy for those patients dramatically increased
when the reference atlas subsets were combined into a single
larger reference atlas set.

TABLE II
Normal and mild Severe disease
disease reference reference
target images atlas set atlas set

diastole normal and mild 0.7 £0.2 mm 09 =01
(open disease (1 of11) (30f11)
leaflets) severe disease 1.1 0.5 mm 09=x0.2

(4 0f8) (1 0f8)
systole normal and mild 0.5 £0.3 mm 0.7 £0.4 mm
(closed disease (0of11) (20f11)
leaflets) severe disease 0.8 £ 0.4 mm 0.8 £0.6 mm

(20f8) (1 0f8)

To estimate the accuracy of fully automated leaflet thick-
ness measurements, the deformable medial model was fitted
directly to each manual segmentation so that corresponding
leaflet thickness measurements could be compared. Leaflet
thickness was defined as the distance between the atrial and
ventricular boundary nodes associated with each medial
node. Mean thicknesses of 1.7+0.5 mm (automated) and
1.5£0.4 mm (manual) were computed for the open valve and
a mean thickness of 1.5£0.4 mm (both manual and auto-
mated) was computed for the closed valve. These thickness
measurements are on the order of 2 to 3 voxels. The mean
difference in thickness derived from automated and manual
image analysis was 0.2+0.8 mm (open valve) and -0.1£0.6
mm (closed valve), which is on the order of 1 voxel. The
largest discrepancies in the manual and automated measure-
ments occurred on the leaflet rough zones, where the auto-
mated segmentation revealed more leaflet thickening. There
was no statistically significant difference in leaflet thickness
in normal, mildly diseased, and severely diseased subjects,
which is not surprising since the etiology of valve disease in
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Mean boundary displacements of 0.4£0.1 mm (open valve)
and 0.3x£0.03 mm (closed valve) between the fitted model and
manual segmentation were computed.

The computational time of the automated segmentation
method, which is currently not parallelized or optimized for
time efficiency, was on par with the time needed for an expert
to manually segment the valve, which is on the order of
several hours depending on the quality of the image data and
the complexity of valve geometry. The majority of the time
needed for automated segmentation is devoted to deformable
registration, which requires several hours for the large image
volumes processed. Label fusion takes approximates 10 min-
utes and deformable model fitting requires roughly 30 min-
utes on a single processor, depending on the extent of which
the initialized template must deform to match the leaflets in
the target image data.

Case Study: Detection of Myxomatous Degeneration

The present 3D segmentation methods can detect and iden-
tify even the most complex valve pathologies, such as myx-
omatous degeneration and prolapse, or flail segments. To
demonstrate this ability, the present methods were evaluated
on mid-systolic transesophageal 3DE images acquired from
22 subjects with myxomatous degeneration and from 22 sub-
jects with normal mitral valve morphology. Relative to
manual image analysis, the automated method accurately
represents both normal and complex leaflet geometries with a
mean boundary displacement error on the order of one image
voxel. A detailed quantitative analysis of the valves revealed
statistically significant differences between normal and myx-
omatous valves with respect to numerous aspects of annular
and leaflet geometry.

FIGS. 10(a) and 10(b) illustrate representative patient-
specific models of normal and diseased mitral leaflets, respec-
tively, generated from the automated 3DE image analysis
approach described herein. The valves are shown to scale and
FIG. 10(b) visually demonstrates the enlarged size and abnor-
mal leaflet morphology of valves with myxomatous degen-
eration. Quantitative image-derived measurements of mitral
annular and leaflet morphology are given in Table III, below.

TABLE III

Mitral annular and leaflet measurements computed from automated 3DE image analysis.

Measurement Normal Diseased p-value

Annulus Annular circumference 1142+ 119 mm 1434 +162mm  <0.01
Septolateral diameter 31.0£3.1 mm 39.8 £ 5.6 mm <0.01
Commissural width 331 £4.1mm 414 =55 mm <0.01
Annular height 8.7 £ 1.6 mm 10.9 2.4 mm <0.01
Annular height to commissural  26.4 = 3.8% 26.659% 0.88
width ratio (AHCWR)

Leaflets Anterior leaflet surface area 509 £1.14cm® 835+208cm? <0.01
Posterior leaflet surface area 6.40 +1.18 cm® 11.00 £2.72cm®  <0.01
Percent surface area of 20.9 = 14.2% 74.2 £ 17.3%
posterior leaflet above
posterior annular plane
Maximum height of posterior 1.9 0.9 mm 8.1 +3.4mm <0.01
leaflet above posterior annular
plane
Mean anterior leaflet thickness 1.6 £0.2 mm 2.0 £0.2 mm <0.01
Maximum anterior leaflet 2.8 £0.5 mm 3.7 £0.7 mm <0.01
thickness
Mean posterior leaflet 1.6 £0.2 mm 1.9 0.2 mm <0.01
thickness
Maximum posterior leaflet 2.7 £0.3 mm 4.6 0.9 mm <0.01
thickness

Each of the measurements except for global annular height
to commissural width ratio (AHCWR) was statistically sig-
nificant (p<0.01) in differentiating the myxomatous and nor-

this population is not generally associated with leaflet thick- ¢s
ening. Note that this thickness comparison is influenced by
the accuracy of model fitting to the manual segmentation.
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mal valves based on an independent Student t-test. In the
diseased cases, most of the posterior leaflet surface protruded
above the posterior annular plane into the left atrium. In the
control cases, most of the posterior leaflet surface was below
the posterior annular plane, as shown in FIG. 11. To assess the
regional geometry of the mitral annulus independent of com-
missural diameter, the regional AHCWR was plotted as a
function of rotational position on the mitral annulus (FIG.
12). Although there was no statistically significant difference
between the global AHCWR measurements in the normal and
diseased groups presented Table 111, there were statistically
significant differences in localized regional AHCWR mea-
surements along the posterior annulus as shown in gray in
FIG. 12. The localized regional AHCWR differences were
detected by computing independent Student t-tests at incre-
mental positions on the annular contour with false discovery
rate adjustment to account for multiple comparisons. The
well-described saddle shape of the mitral annulus can be
appreciated in the mean AHCWR curve of the normal sub-
jects, but prominent distortions are apparent in the posterior
annulus of valves with myxomatous degeneration.

Generalized Procrustes analysis (see Dryden, I. L., Mardia,
K. V., 1998. Statistical shape analysis. Chichester: John Wiley
& Sons) was used to compute mean models of the degenerate
and normal valves. FIG. 13 illustrates mean models of myx-
omatous and normal mitral valves from two viewpoints with
thickness measurements displayed in color. The mean dis-
eased model shows increased leaflet thickness in the pro-
lapsed segment of the posterior leaflet.

Accordingly, the present methods can be used to illustrate
highly detailed, patient-specific valve morphology, and not
merely generic valve shapes that approach the normal condi-
tion.

Discussion

The described automatic leaflet segmentation method
makes significant contributions to both 3D image analysis
and the study of in vivo mitral valve geometry. The technique
is the first of its kind to use both multi-atlas label fusion and
deformable modeling with cm-rep to generate patient-spe-
cific models of the mitral leaflets from 3D TEE images. The
method is effectively applied to different time points in the
cardiac cycle (mid-diastole and mid-systole) and accurately
captures different geometric configurations of the mitral leat-
lets (open and closed). Because these two geometries can be
captured, it is possible using the presently disclosed methods
to segment the valve at any time point in the cardiac cycle,
which permits the present methods to approximate 4D analy-
sis. See, e.g., A. M. Pouch et al./Medical Image Analysis 18
(2014) 118-129, which is hereby incorporated by reference in
its entirety. With modifications, such as the use of groupwise
label fusion (see Wang, H. and Yushkevich, P. A.; 2013.
Groupwise segmentation with multi-atlas joint label fusion.
Med Image Comput Comput Assist Interv. 16(Pt 1): 711-8)
and the use of trajectory constraints on model fitting, the
disclosed methods could be extended to a truly 4D segmen-
tation algorithm. First, the superiority of multi-atlas joint
label fusion over single-atlas-based segmentation is clearly
demonstrated in the experiments (FIG. 8) that evaluate the
accuracy of each step in the image analysis algorithm. Sec-
ondly, multi-atlas joint label fusion and cm-rep prove to be
highly complementary segmentation techniques. Joint label
fusion automatically generates probabilistic segmentations
of'the mitral leaflets, which are incorporated as the likelihood
of the Bayesian posterior probability used in cm-rep fitting.
These probability maps are the driving force for an accurate
model-based segmentation. At the same time, the regulariza-
tion and validity constraints imposed by the cm-rep frame-
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work function as strong priors in the posterior probability.
These two components of the Bayesian objective function,
the likelihood and regularization prior, work together to
ensure an accurate, topologically consistent labeling of the
mitral leaflets in the target image data, as shown in the
examples in FIGS. 5 and 6.

FIG. 7 shows that deformable modeling with cm-rep aids
in circumstances in which atlas-based segmentation produces
topological inconsistencies or labeling errors. While proba-
bilistic segmentations generated by joint label fusion do not
identify correspondences, deformable modeling with cm-rep
imposes a shape-based coordinate system on the mitral leat-
lets and establishes correspondences on leaflets of different
subjects. Anatomic landmarks identified in the cm-rep coor-
dinate system facilitate measurement of clinically relevant
features of leaflet and annular geometry (Pouch et al., 2012).
In addition, the ability to measure localized leaflet thickness
is a unique advantage of using a volumetric segmentation
method and cm-rep, as leaflet thickness is a relevant param-
eter in constitutive models of the mitral valve and character-
ization of myxomatous disease. Although the evaluation of
automated leaflet thickness assessment presented in Section 3
is not an ideal validation method, the results suggest that the
error in fully automated measurements of localized leaflet
thickness are less than the mean boundary displacement
between the automated and manual segmentations. More-
over, the leaflet thicknesses presented herein are on par with
previously reported echocardiographic and ex vivo measure-
ments (Louie, E. K., et al., “Transesophageal echocardio-
graphic quantitation of mitral leaflet thickness in patients
with mitral valve prolapse,” Journal of the American College
of Cardiology, Vol. 25, p. 191A (1995); Sahasakul, Y., et al.,
“Age-related changes in aortic and mitral valve thickness:
implications for two-dimensional echocardiography based
on an autopsy study of 200 normal human hearts,” Am J
Cardiol, Vol. 62, pp. 424-430 (1988).

Unlike most of the existing methods for mitral leaflet seg-
mentation, this technique models mitral leaflet and annular
geometry without the need for user interaction, thereby com-
pletely eliminating the issue of inter- and intra-observer vari-
ability in image analysis. Once a set of manually labeled
atlases is obtained, there is no need for an observer to initial-
iZe or supervise segmentation. In addition to being fully auto-
mated, the segmentation method yields spatially dense,
detailed representations of a given patient’s valve. Manual
segmentation of the mitral valve requires several hours of an
expert’s time. The automated method presented herein can be
performed without any expert’s time or knowledge of the
mitral valve and how it appears in ultrasound images. There-
fore, the method is more accessible to users who have limited
experience in interpreting mitral valve geometry in ultra-
sound images. Moreover, the automated analysis can be per-
formed immediately after image acquisition without any user
interaction. The development of this fully automated tech-
nique is a significant step towards creating a practical, infor-
mative tool for pre-operative assessment of patient-specific
mitral valve morphology.

The inventors’ approach improves on the only existing
fully automatic mitral valve segmentation method in the lit-
erature (mean boundary displacement error of ~0.7 mm vs.
1.54 mm in (Ionasec et al., 2010)) and is competitive with a
semi-automatic method that requires some user input
(0.7620.65 mm in (Schneider et al., 2011)). This error is in
line with inter-observer variability in manual image analysis,
where mean boundary displacements of 0.60+0.17 mm (mi-
tral leaflets) and 2.38+0.76 mm (mitral annulus) have been
reported (Jassar, A. S., et al., “Quantitative mitral valve mod-
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eling using real-time three-dimensional echocardiography:
technique and repeatability,” Ann Thorac Surg, Vol. 91, pp.
165-171 (2011). The inventors’ results are consistent with
this previous study, as FIG. 9 (top row) shows that the greatest
variability in manual and automatic segmentation occurs at
the boundaries of the model, rather than along the leaflet
surfaces. This variability is a consequence of the annulus, or
model edge, being located at a somewhat arbitrary (non-
intensity-based) boundary between the leaflets and the sur-
rounding tissue to which they are anchored. Discrepancies
between the manual and automated segmentations were also
observed on the anterior leaflet free edge. These discrepan-
cies are due to the lack of a well-defined criterion for demar-
cating the leaflet free edge at prominent chordal attachment
sites. Therefore, the manual-versus-automated segmentation
comparison may be influenced by inclusion of variable
amounts of chordal attachment tissue along the free edges and
of variable amounts of leaflet attachment tissue around the
annulus. Additionally, areas of signal dropout present in a
manual segmentation may be filled in by the model-based
segmentation. Overall, the leaflet segmentation methods pre-
sented in the literature report average differences between
manual and automatic segmentations on the order of one to
two voxels, which compares favorably to the average error of
approximately one voxel measured herein. The 957 percen-
tile distances reported here (1.6 mm, on average) are in line
with those reported in (Schneider etal., 2011), which were 2.1
mm.
To the best of the inventors’ knowledge, all previous stud-
ies have evaluated mitral leaflet segmentation accuracy with
respect to a single-label model, where the leaflets were not
assigned different labels. The present method evaluates seg-
mentation accuracy in terms of both single and multi-label
models. As anticipated, somewhat larger discrepancies
between the manual and automatic segmentations were
observed when the anterior and posterior leaflet delineations
were independently evaluated. These discrepancies were
localized to the tissue between the commissures and annulus,
indicating that the manual and automatic observers consis-
tently identified valve tissue in this area, but assigned these
voxels different labels. This observation is expected for two
reasons. For one, the coapted leaflets are difficult to distin-
guish, especially in the commissural region, by both expert
and automated observers. Secondly, the tissue in the commis-
sural area varies substantially between subjects and may in
fact constitute a separate commissural leaflet. The fact that the
greatest error is localized to this region indicates that the
manual and automatic segmentations are in close agreement
in other clinically significant aspects of leaflet geometry,
including the leaflet bellies and coaptation zone.
Image-derived, anatomically accurate models of in vivo
leaflet geometry have a number of clinically significant appli-
cations. The models can assist in the diagnosis of mitral valve
disease, guide surgical interventions such as mitral valve
repair, and be used as input to biomechanical simulations of
valve function. Emphasizing the importance of characteriz-
ing in vivo valve morphology, Lang and Adams point out that
the surgical treatment of functional mitral regurgitation with
downsized complete ring annuloplasty is frequently per-
formed irrespective of patient-specific valve geometry (Lang
and Adams, 2012). Not surprisingly, this surgical repair strat-
egy has been associated with unexpectedly high rates of
recurrent mitral regurgitation. Automatic modeling of in vivo
mitral valve geometry can lead to improved clinical outcomes
by aiding in the simulation and selection of repair strategies
involving different annuloplasty ring characteristics and sub-
valvular adjustments (Lang and Adams, 2012). Along these
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lines, the inventors have shown that image-derived leaflet
models can be loaded with physiologic pressures using finite
element analysis to estimate stress distributions in normal and
regurgitant valves (A. M. Pouch et al./Journal of Biomechan-
ics 45 (2012) 903-907). Such information is useful for under-
standing stress-related phenomena associated with mitral
valve repair failures and for identifying patients with high
leaflet stresses in the early post-operative period. Several
research groups have also explored the integration of mitral
valve imaging and biomechanical modeling for simulation of
mitral valve dynamics and computation of leaflet mechanics
(Burlina, P, et al., “Patient-specific modeling and analysis of
the mitral valve using 3D-TEE,” Lecture Notes in Computer
Science, pp. 135-146 (2010); Mansi, T., et al., “An integrated
framework for finite-element modeling of mitral valve bio-
mechanics from medical images: Application to MitralClip
intervention planning,” Med Image Anal. (2012); Rausch, M.
K., et al., “Mitral valve annuloplasty: a quantitative clinical
and mechanical comparison of different annuloplasty
devices,” Ann Biomed Eng, Vol. 40, pp. 750-761. (2012);
Sacks, M. S, et al., “In-vivo dynamic deformation of the
mitral valve anterior leaflet,” Ann Thorac Surg, Vol. 82, pp.
1369-1377 (2006); Votta, E., et al., “Mitral valve finite-cle-
ment modeling from ultrasound data: a pilot study for a new
approach to understand mitral function and clinical sce-
narios,” Philos Transact A Math Phys Eng Sci, Vol. 366, pp.
3411-3434 (2008)).

At the same time, the presently disclosed deformable
model is amendable to statistical shape analysis. For example,
given a population of valve geometries, it is possible to quan-
titatively compare valve geometries of different subjects and
compute a mean shape and determine variations in valve
shape using standard shape analysis techniques. As described
in A. M. Pouch, et al., Ann Thorac Surg 2014; 97:71-7 (incor-
porated herein by reference in its entirety), the present inven-
tors obtained image-derived 3D mitral annular contours from
a population of human subjects with normal mitral valve
morphology and computed an average mitral annular shape
and variations in that geometry. This information would
prove useful in creating new annuloplasty ring designs that
more accurately replicate the shape of a normal mitral annu-
lus.

Additionally, the present image-derived models of heart
valves can be printed and prototyped using 3D printing tech-
nology. See, e.g., Witschey W R T, et al., Ann Thorac Surg
2014; 98:691-4 (incorporated herein by reference in its
entirety).

Those skilled in the art will appreciate that errors produced
by atlas-based segmentation are mainly due to registration
errors that occur when registration associates wrong regions
from an atlas to the target image. Invalid registrations
occurred with respect to 1 of 20 atlases in which the mitral
leaflets were imaged with a different field of view. To prevent
these invalid segmentations, multiple atlas sets can be con-
structed using images acquired in different modes and with
varying fields of view. Alternatively, a feature detection
method can be developed to identify a specific field of view in
the target image data prior to segmentation. Those skilled in
the art will also appreciate that optimal atlas construction may
be explored to determine the minimum number of atlases
needed to maintain the same degree of accuracy, comparable
to inter-observer variability in manual segmentation. It has
been shown that increasing the atlas set size improves seg-
mentation accuracy, but with diminishing returns (Wang, H.,
et al., “A learning-based wrapper method to correct system-
atic errors in automatic image segmentation: consistently
improved performance in hippocampus, cortex and brain seg-
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mentation,” Neuroimage, Vol. 55, pp. 968-985 (2011). The
incorporation of 4D regularization constraints in the multi-
atlas label fusion and deformable modeling steps can poten-
tially prevent leaflet labeling inaccuracies.

While the current algorithm is not optimized for efficiency,
there are several ways in which computation time can be
significantly reduced to enhance the method’s clinical appli-
cability. Both the multi-atlas segmentation and deformable
modeling steps are highly parallelizable and well-suited for
GPU implementation. Smaller regions of interest can be used
for deformable registration, and less computationally expen-
sive image registration algorithms can be explored. A multi-
resolution implementation of deformable modeling can be
used, which would decrease the time required for computa-
tion of the regularization terms. In addition, a scheme for
automatically selecting the weights used in the Bayesian
objective function may further enhance model fitting accu-
racy.

Physiological models of the mitral valve constructed from
3D TEE provide visual and quantitative information about in
vivo mitral valve morphology that can aid in the diagnosis and
treatment of mitral valve disease. To expedite image analysis
in clinical and research settings, the presented method gen-
erates quantitative geometric models of the mitral valve with-
out any need for user interaction. The integration of multi-
atlas joint label fusion and 3D deformable modeling
techniques provides for a model-based Bayesian segmenta-
tion that is accurate relative to expert manual image analysis.
This methodology is a step towards developing a fully auto-
matic tool that can be easily used to study mitral valve geom-
etry and dynamics and aid in image-based surgical guidance.

Those skilled in the art will also appreciate that the inven-
tion may be applied to other applications and may be modified
without departing from the scope of the invention. For
example, the models of in vivo leaflet geometry generated
with the methodology of the invention have a wide range of
clinical applications including quantitative morphometry,
interactive visualization, and biomechanical simulation.
Those skilled in the art also will appreciate that the methods
of the invention are not limited to transesophageal echocar-
diogram images but may also be applied to transthoracic
echocardiogram images as well.

As noted above, those skilled in the art will further appre-
ciate that the methods described herein may be used to auto-
matically segment aortic, pulmonic, and/or tricuspid valves in
addition to the mitral valve. For example, the image segmen-
tation methodology may also be applied for imaging the
aortic valve. Because the aortic valve has a more complex
geometry than the mitral valve, it is possible to use a branch-
ing medial model, rather than the non-branching medial
model that is used for the mitral valve. Branching models
employ a different formulation/paradigm of the deformable
medial modeling problem, which is described in Yushkevich
P M, IPMI 2013, LNCS 7917, pp. 280-291, 2013 (incorpo-
rated herein by reference in its entirety).
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As inthe case of the mitral valve models, the image-derived
models of the aortic valve can be used for statistical shape
analysis. The preceding is applicable to both tricuspid and
bicuspid aortic valves.

In addition, the methods described herein are not limited to
echocardiography and may be applied to any imaging modal-
ity, such as computed tomography or magnetic resonance
imaging, that are able to delineate the valve leaflets.

Accordingly, the scope of the invention is not intended to
be limited to the exemplary embodiments described above,
but only by the appended claims.

What is claimed:

1. A fully automated method for leaflet and/or annulus
segmentation in 3D echocardiographic ultrasound images
using a set of expert-labeled 3D echocardiographic image
atlases of leaflets and/or a deformable medial model template
of a valve, comprising:

acquiring a 3D target image to segment;

registering the image atlases to the target image and propa-

gating atlas labels to the target image to obtain a set of
candidate segmentations;

generating a probabilistic consensus segmentation using

joint label fusion; and

applying 3D deformable modeling to the probabilistic con-

sensus segmentation to generate a 3D geometric model
of the leaflets and/or annulus in the target image.

2. The method of claim 1, further comprising geometri-
cally modeling a mitral valve of the target image using a
continuous medial representation template of mitral leaflets.

3. The method of claim 2, wherein the continuous medial
representation template is initialized to a multi-atlas proba-
bilistic segmentation and the template is deformed to obtain a
medial model of the mitral leaflets in the target image.

4. The method of claim 3, wherein the continuous medial
representation template is first fitted to target image data of an
open mitral valve at diastole, and the fitted diastolic model is
used to initialize model fitting of the subject’s closed valve at
systole.

5. The method of claim 1, wherein the registering step
includes using cross-correlation as a similarity metric and
applying a Gaussian regularizer.

6. The method of claim 1, wherein each atlas is warped into
a space of the target image using a deformation field obtained
by image registration between the atlas and the target image
in order to generate a candidate segmentation of the target
image.

7. The method of claim 1, wherein generating a probabi-
listic consensus segmentation using joint label fusion applies
a spatially varying weighted voting method whereby each
atlas contributes to a final segmentation according to a
weight, with atlases more similar to a target image receiving
higher weights.

8. The method of claim 7, wherein registration of atlas
images to the target image uses a symmetric diffeomorphic
transformation model.

#* #* #* #* #*



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,406,142 B2 Page 1 of 2
APPLICATION NO. : 14/509342

DATED - August 2, 2016

INVENTOR(S) : Joseph H. Gorman, III et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
Drawings
Replace Sheet 6 of 8 with a replacement sheet for FIGs. 10a and 10b, attached.
Specification

Column 1,

Lines 15-21, delete “The subject matter disclosed herein was made with government support under
grant numbers HL063954, HL073021, HL103723, HL119010, AG037376, and CA130946 awarded
by the National Institutes of Health and under grant number 10PRE3510014 awarded by the American
Heart Association. The Government has certain rights in the herein disclosed submit matter.” and
insert -- This invention was made with government support under grant/contract numbers HL.063954,
HL073021, HL103723, HL119010, AG037376, and CA130946 awarded by the National Institutes of
Health. The government has certain rights in the invention. --.

Signed and Sealed this
Twentieth Day of December, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office



CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Patent Aug. 2,2016 Sheet 6 of 8 9,406,142 B2

FIG, 10a




